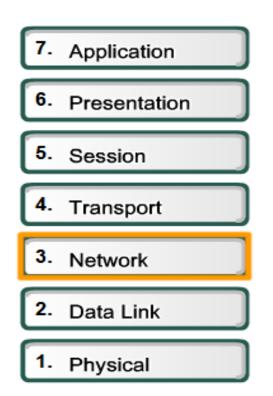

IPv4 Address

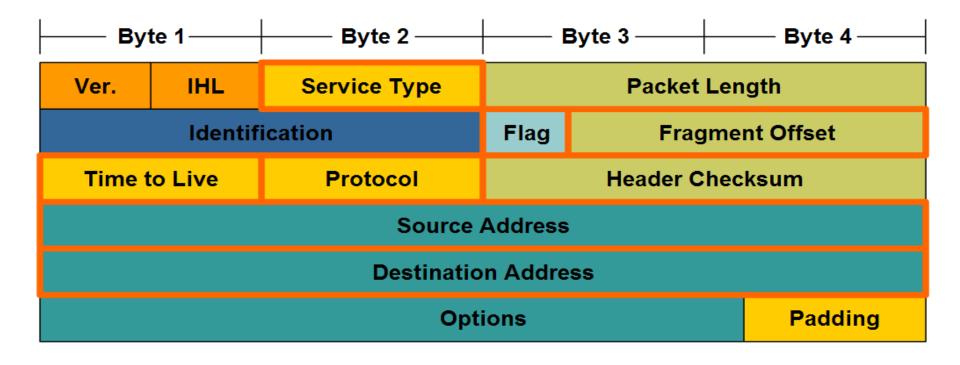


Network Layer Protocols

Network Layer Protocols

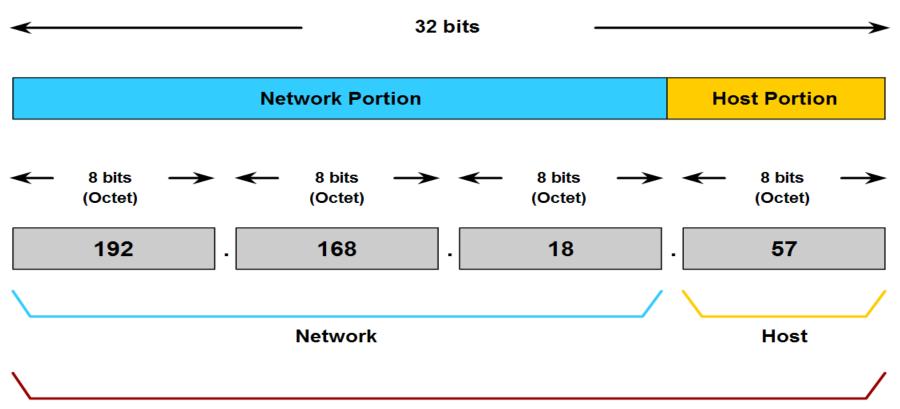
Network Layer Protocols

- Internet Protocol version 4 (IPv4)
- Internet Protocol version 6 (IPv6)
- Novell Internetwork Packet Exchange (IPX)
- AppleTalk
- Connectionless Network Service (CLNS/DECNet)


Network Layer Protocols and Internet Protocol (IP) TCP/IP Packet Packet **IP Header** Segment **IP Header** Segment **TCP** segments encapsulated NETWORK LAYER into IP packets

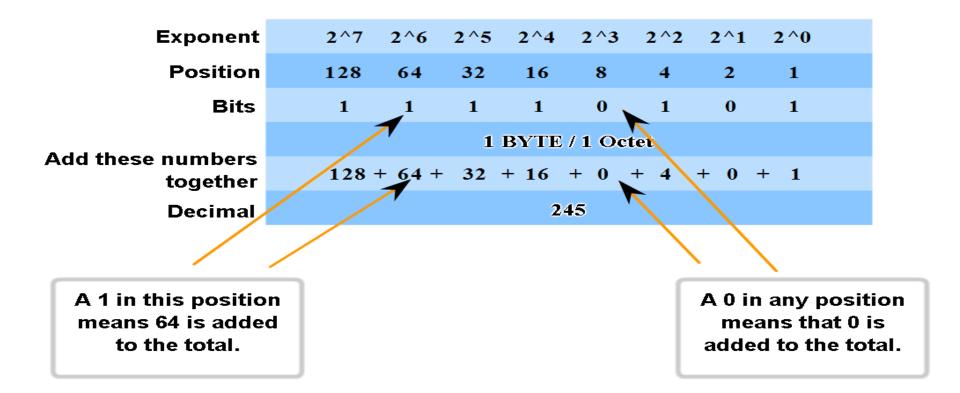
IP Packets flow through the internetwork.

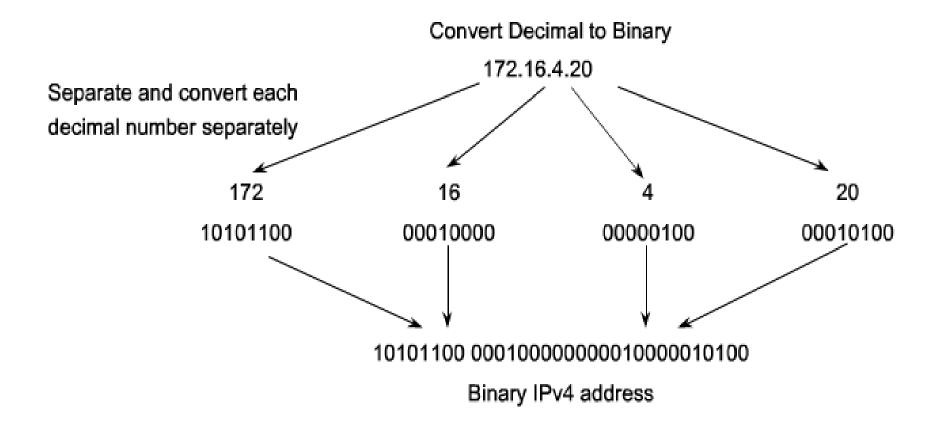
- Connectionless No connection is established before sending data packets.
- Best Effort (unreliable) No overhead is used to guarantee packet delivery.
- Media Independent Operates independently of the medium carrying the data.


Network Layer Protocols and Internet Protocol (IP)

IPv4 Packet Header Fields

Grouping Devices into Networks and Hierarchical Addressing

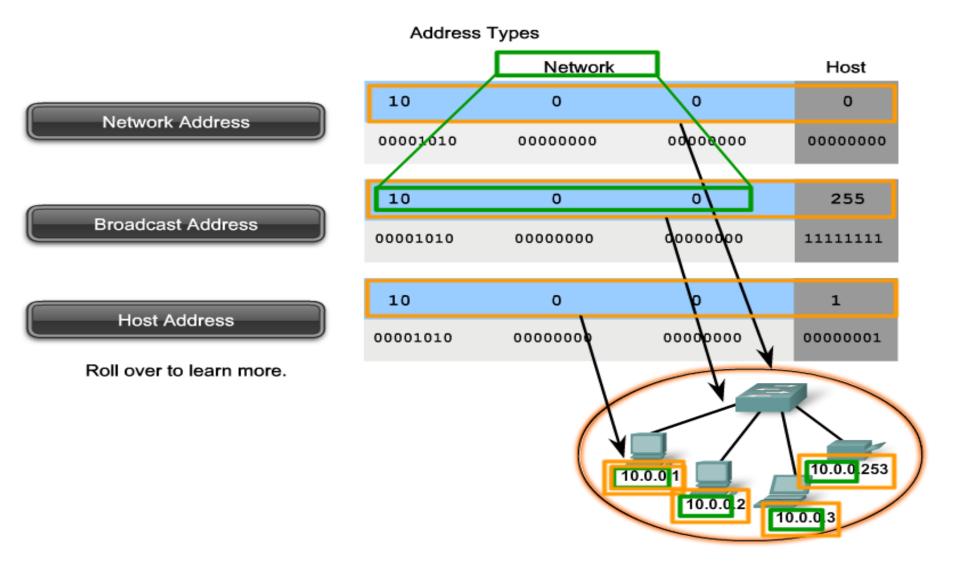

Hierarchical IPv4 Address


Complete IPv4 Address

Binary & Decimal Numbering System

Binary To Decimal Conversion

Binary & Decimal Numbering System



Addressing the Network – IPv4

Classify and Define IPv4 Addresses

IP address Classes

IP Address Classes

Address Class	1st octet range (decimal)	1st octet bits (green bits do not change)	Network(N) and Host(H) parts of address	Default subnet mask (decimal and binary)	Number of possible networks and hosts per network
A	1-127**	0000000- 0111111	N.H.H.H	255.0.0.0	128 nets (2^7) 16,777,214 hosts per net (2^24-2)
В	128-191	1000000- 10111111	N.N.H.H	255.255.0.0	16,384 nets (2^14) 65,534 hosts per net (2^16-2)
с	192-223	11000000- 11011111	N.N.N.H	255.255.255.0	2,097,150 nets (2^21) 254 hosts per net (2^8-2)
D	224-239	11100000- 11101111	NA (multicast)		
E	240-255	11110000- 11111111	NA (experimental)		

** All zeros (0) and all ones (1) are invalid hosts addresses.

Subnet mask

Applying the Subnet Mask

A device with address 192.0.0.1 belongs to network 192.0.0.0

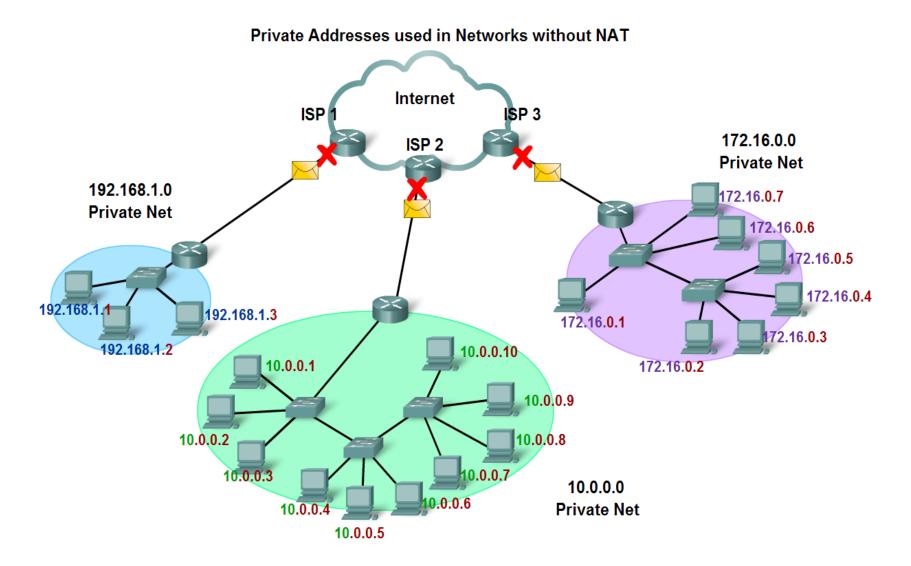
	High order bits Prefix /16		Low order bits		
	192 .	ο.	0	. 1	
Host	11000000	0000000	0000000	0000001	
Address	255	255	0	0	
Subnet Mask	11111111	11111111	0000000	0000000	
Network	11000000	00 00 00 00	00000000	0000000	
Address	1100000				
Network	192 .	ο.	0	. 0	

Private Addresses

 These private IP addresses are for intra-network use only and can not be routed across the Internet.

These private addresses are

•Class A \rightarrow 10.0.0/8to10.255.255.255/8•Class B \rightarrow 172.16.0.0/16to172.31.255.255/16•Class C \rightarrow 192.168.0.0/24to192.168.255.255/24

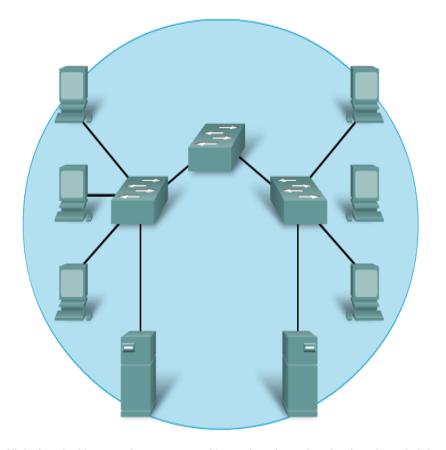

Private IP Addresses

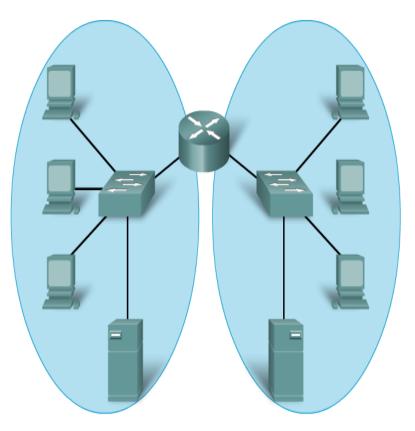
Private IP addresses are another solution to the problem of the impending exhaustion of public IP addresses.As mentioned, public networks require hosts to have unique IP addresses.

However, private networks that are not connected to the Internet may use any host addresses, as long as each host within the private network is unique.

Class	RFC 1918 internal address range
А	10.0.0 to 10.255.255.255
В	172.16.0.0 to 172.31.255.255
С	192.168.0.0 to 192.168.255.255

Classify and Define IPv4 Addresses

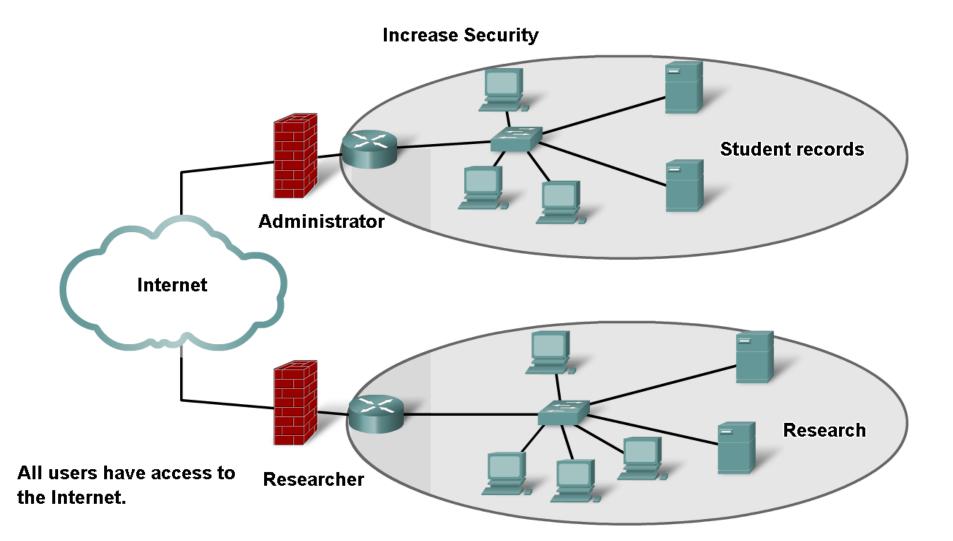

IPv4 Subnetting

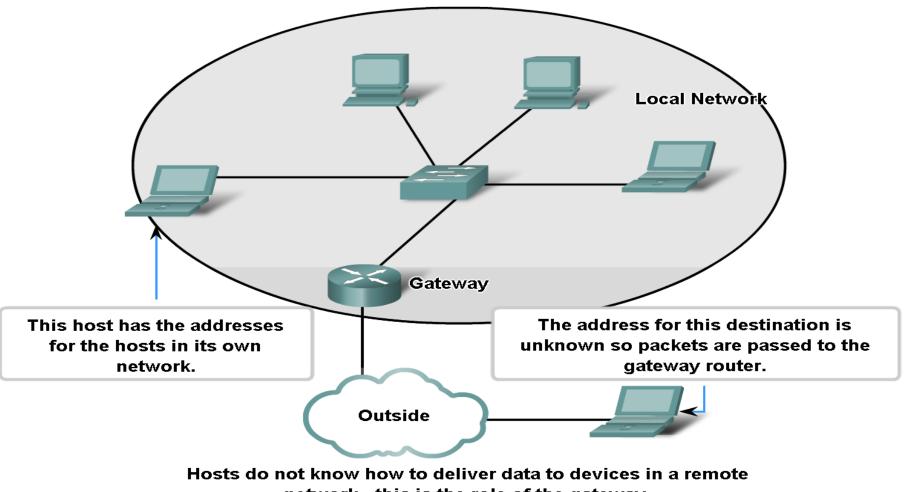


Segmentation of networks

- Purpose of network segmentation are:-
 - Increase Network performance
 - Increase Network Security
 - Increase Network Management

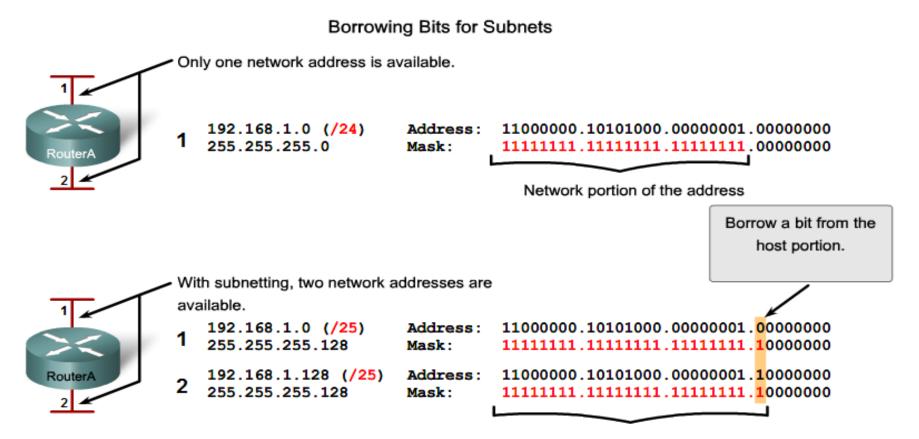
Increase Network performance




All devices in this network are connected in one broadcast domain when the switch is set to the factory default settings. Since switches forward broadcasts by default, broadcasts are processed by all devices in this network.

Replacing the middle switch with a router creates 2 IP subnets, hence, 2 distinct broadcast domains. All devices are connected but local broadcasts are contained.

Increase Network Security



Increase Network manageability

network - this is the role of the gateway.

Because the fast deployment of internet, the IP addresses become not enough

Increase the network portion of the address

Borrowing Bits for Subnets

Addressing Scheme: Example of 2 networks

Subnet	Network address	Host range	Broadcast address
0	192.168.1.0/25	192.168.1.1 - 192.168.1.126	192.168.1.127
1	192.168.1.128/25	192.168.1.129 - 192.168.1.254	192.168.1.255

RouterA

2

Borrowing Bits for Subnets

•	192.168.1.0 (/24) 255.255.255.0	Address: Mask:	11000000.10101000.00 11111111.11111111.11		
0	192.168.1.0 (/26) 255.255.255.192	Address: Mask:	11000000.10101000.00 11111111.11111111.11		
1	192.168.1.64 (/26) 255.255.255.192	Address: Mask:	11000000.10101000.00 11111111.11111111.11		 _
2	192.168.1.128 (/26) 255.255.255.192	Address: Mask:	11000000.10101000.00 11111111.11111111.11		
3	192.168.1.192 (/26) 255.255.255.192	Address: Mask:	11000000.10101000.00 11111111.11111111.11		
Two	pits are borrowed to provide	four subnets.		,	

Unused address in this example.

A 1 in these positions in the mask means that these values are part of the network address.

More subnets are available, but fewer addresses are available per subnet.

Borrowing Bits for Subnets

Addressing Scheme: Example of 4 networks

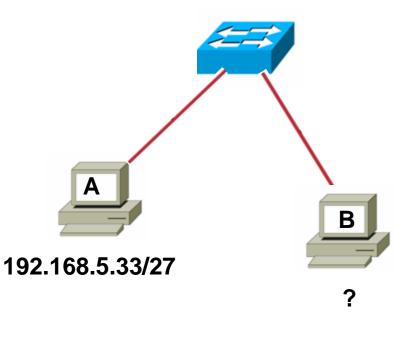
Subnet	Network address	Host range	Broadcast address
0	192.168.1.0/26	192.168.1.1 - 192.168.1.62	192.168.1.63
1	192.168.1.64/26	192.168.1.65 - 192.168.1.126	192.168.1.127
2	192.168.1.128/26	192.168.1.129 - 192.168.1.190	192.168.1.191
3	192.168.1.192/26	192.168.1.193 - 192.168.1.254	192.168.1.255

Borrowing Bits for Subnets

Start with this address	•	192.168.1.0 (/24) 255.255.255.0	Address: Mask:	11000000.10101000.00000001.00000000 11111111
Make 8 subnets	0	192.168.1.0 (/27) 255.255.255.224	Address: Mask:	11000000.10101000.00000001. <mark>000</mark> 00000 11111111.1111111.1111111.11100000
	1	192.168.1.32 (/27) 255.255.255.224	Address: Mask:	11000000.10101000.00000001. <mark>001</mark> 00000 11111111.1111111.1111111.
	2	192.168.1.64 (/27) 255.255.255.224	Address: Mask:	11000000.10101000.00000001. <mark>010</mark> 00000 11111111.1111111.1111111.111100000
	3	192.168.1.96 (/27) 255.255.255.224	Address: Mask:	11000000.10101000.00000001. <mark>011</mark> 00000 11111111.1111111.1111111.
RouterA	4	192.168.1.128 (/27) 255.255.255.224	Address: Mask:	11000000.10101000.00000001. <mark>100</mark> 00000 11111111.1111111.1111111.
5	5	192.168.1.160 (/27) 255.255.255.224	Address: Mask:	11000000.10101000.00000001. <mark>101</mark> 00000 11111111.1111111.1111111.
4 3 RouterB	6	192.168.1.192 (/27) 255.255.255.224	Address: Mask:	11000000.10101000.00000001. <mark>110</mark> 00000 11111111.1111111.1111111.1111000000
	7	192.168.1.224 (/27) 255.255.255.224	Address: Mask:	11000000.10101000.00000001. <mark>111</mark> 00000 11111111.1111111.1111111.
Three h	vite s	are borrowed to provide eigh	t subnets	^

Three bits are borrowed to provide eight subnets.

Borrowing Bits for Subnets


Addressing Scheme: Example of 6 networks

Subnet	Network address	Host range	Broadcast address
0	192.168.1.0/27	192.168.1.1 - 192.168.1.30	192.168.1.31
1	192.168.1.32/27	192.168.1.33 - 192.168.1.62	192.168.1.63
2	192.168.1.64/27	192.168.1.65 - 192.168.1.94	192.168.1.95
3	192.168.1.96/27	192.168.1.97 - 192.168.1.126	192.168.1.127
4	192.168.1.128/27	192.168.1.129 - 192.168.1.158	192.168.1.159
5	192.168.1.160/27	192.168.1.161 - 192.168.1.190	192.168.1.191
6	192.168.1.192/27	192.168.1.193 - 192.168.1.222	192.168.1.223
7	192.168.1.224/27	192.168.1.225 - 192.168.1.254	192.168.1.255

Subnetting Example

- Which IP address should be assigned to PC B?

- A . 192.168.5.5
- B. 192.168.5.32
- C.192.168.5.40
- D. 192.168.5.63
- E.192.168.5.75

Answer : C

Subnetting Example

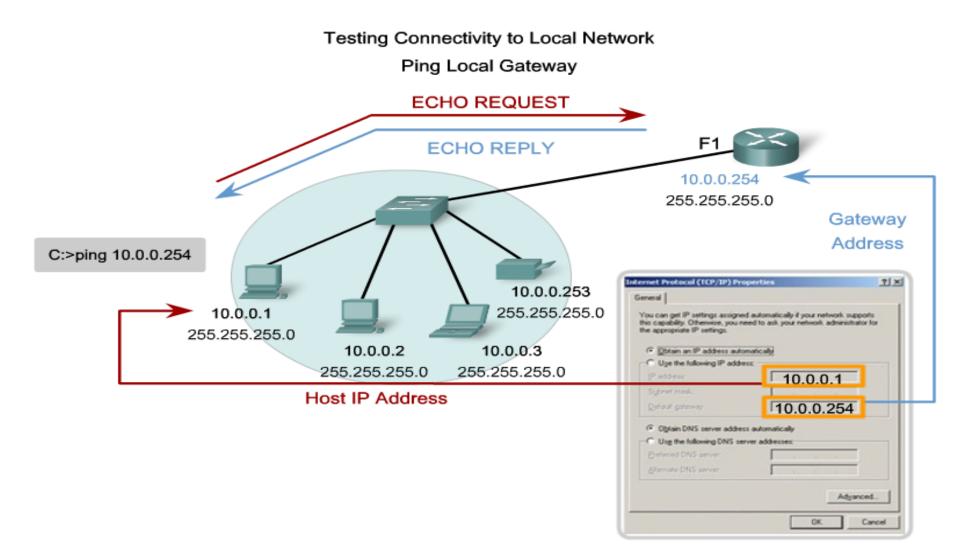
- Given the choices below, which address represents a unicast address?

- A. 224.1.5.2
- **B**. FFFF. FFFF. FFFF.
- C. 192.168.24.59/30
- D. 255.255.255.255
- E. 172.31.128.255/18

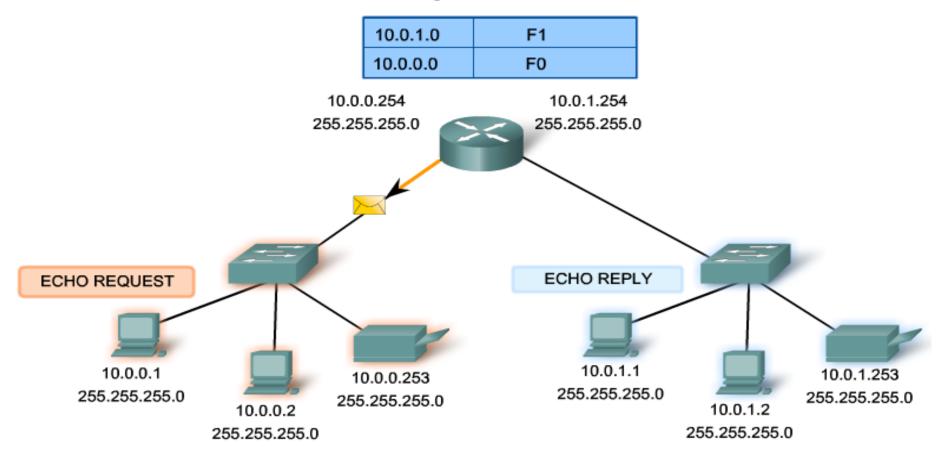
Answer : E

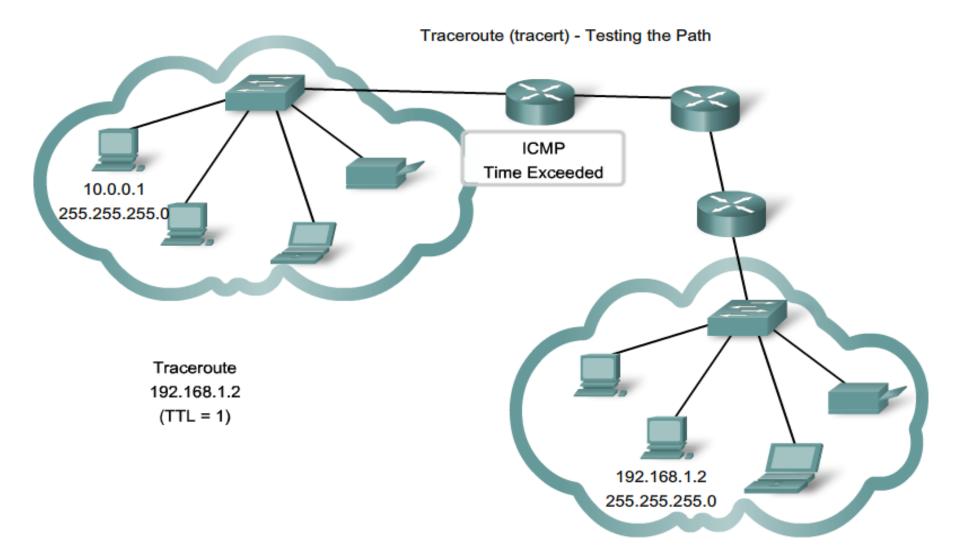
 Ping is a utility for testing IP connectivity between hosts. Ping sends out requests for responses from a specified host address. Ping uses a Layer 3 protocol that is a part on the TCP/IP suite called Internet Control Message Protocol (ICMP). Ping uses an ICMP Echo Request datagram.

If the host at the specified address receives the Echo request, it responds with an ICMP Echo Reply datagram. For each packet sent, ping measures the time required for the reply.


Testing Local TCP/IP Stack

Pinging the local host confirms that TCP/IP is installed and working on the local host.




Pinging 127.0.0.1 causes a device to ping itself.

📙 Local Area Conne	ection Properties	?
General Authentication	h Advanced	
Connect using:		
Intel(R) PR0/10	100 PL Network Conn	Configure
This connection uses t	he following items:	
	l (IEEE 802.1x) v3.5.1. erv Protocol Packet Dri	
Internet Proto		
•	\searrow	
Install	Uninstall	Properties
Description		
wide area network p	I Protocol/Internet Pro protocol that provides c connected networks.	
Show icon in notific	cation area when conn	ected
Notify me when this	s connection has limite	d or no connectivity
	C)K Cancel

Testing Connectivity to Remote LAN Ping to a remote host

Summary

In this chapter, you learned to:

- Explain the structure IP addressing and demonstrate the ability to convert between 8-bit binary and decimal numbers.
- Given an IPv4 address, classify by type and describe how it is used in the network.
- Explain how addresses are assigned to networks by ISPs and within networks by administrators.
- Determine the network portion of the host address and explain the role of the subnet mask in dividing networks.
- Given IPv4 addressing information and design criteria, calculate the appropriate addressing components.
- Use common testing utilities to verify and test network connectivity and operational status of the IP protocol stack on a host.

VLSM and CIDR

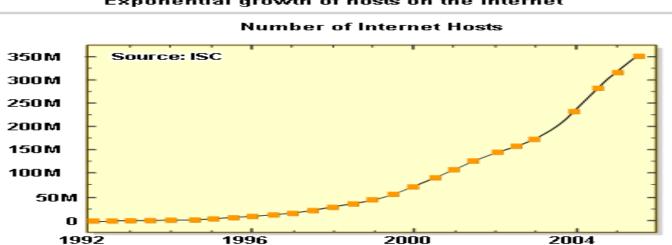
Objectives

- Compare and contrast classful and classless IP addressing.
- Review VLSM and explain the benefits of classless IP addressing.
- Describe the role of the Classless Inter-Domain Routing (CIDR) standard in making efficient use of scarce IPv4 addresses

Introduction

- Prior to 1981, IP addresses used only the first 8 bits to specify the network portion of the address
- In 1981, RFC 791 modified the IPv4 32-bit address to allow for three different classes
- IP address space was depleting rapidly

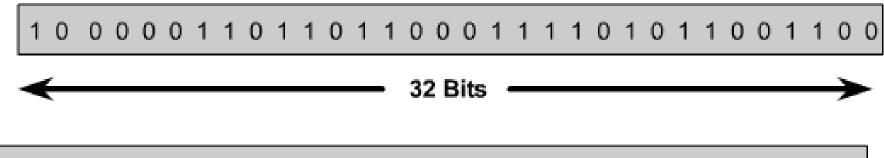
the Internet Engineering Task Force (IETF) introduced Classless Inter-Domain Routing (CIDR)


-CIDR uses Variable Length Subnet Masking (VLSM) to help conserve address space.

-VLSM is simply subnetting a subnet

- Classful IP addressing
- As of January 2007, there are over 433 million hosts on internet
- Initiatives to conserve IPv4 address space include:

-VLSM & CIDR notation (1993, RFC 1519)


- -Network Address Translation (1994, RFC 1631)
- -Private Addressing (1996, RFC 1918)

Exponential growth of hosts on the Internet

• The High Order Bits

These are the leftmost bits in a 32 bit address

Binary: 11000000.10101000.00000001.00001000 and 11000000.10101000.00000001.00001001
Decimal: 192.168.1.8 and 192.168.1.9

 Classes of IP addresses are identified by the decimal number of the 1st octet

Class A address begin with a 0 bit

Range of class A addresses = 0.0.0.0 to 127.255.255.255

Class B address begin with a 1 bit and a 0 bit

Range of class B addresses = 128.0.0.0 to 191.255.255.255

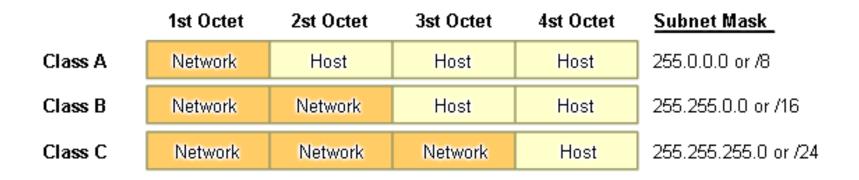
Class C addresses begin with two 1 bits & a 0 bit

Range of class C addresses = 192.0.0.0 to 223.255.255.255. High Order Bits

Class	High Order Bits	Start	End		
Class A	0	0.0.0	127.255.255.255		
Class B	10	128.0.0.0	191.255.255.255		
Class C	110	192.0.0.0	223.255.255.255		
Multicast	1110	224.0.0.0	239.255.255.255		
Experimental	1111	240.0.0.0	255.255.255.255		

The IPv4 Classful Addressing Structure (RFC 790)

An IP address has 2 parts:


-The **network** portion

Found on the left side of an IP address

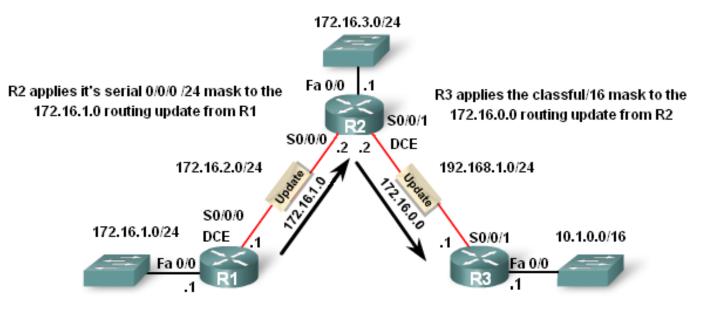
-The host portion

Found on the **right** side of an IP address

Subnet Mask based on Class

Number of Networks and Hosts per Network for Each Class

Address class	First Octet Range	Number of Possible Networks	Number of Host per Networks
Class A	0 to 127	128 (2 are reserved)	16,777,214
Class B	128 to 191	16,348	65,534
Class C	192 to 223	2,097,152	254


Purpose of a subnet mask

It is used to determine the network portion of an IP address

Classful Routing Updates

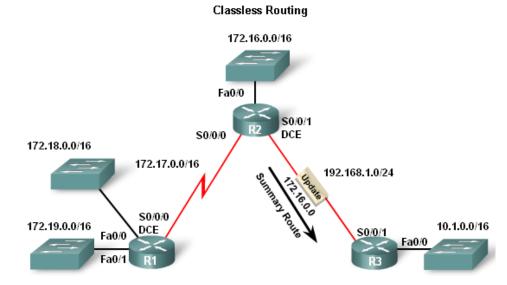
-Recall that classful routing protocols (i.e. RIPv1) do not send subnet masks in their routing updates The reason is that the Subnet mask is directly related to the network address

Classful routing updates

Classless Inter-domain Routing (CIDR – RFC 1517)

Advantage of CIDR :

-More efficient use of IPv4 address space


-Route summarization

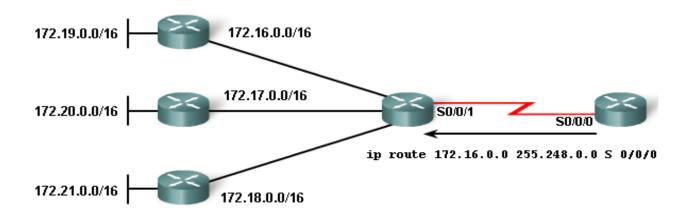
 Requires subnet mask to be included in routing update because address class is meaningless

Recall purpose of a subnet mask:

-To determine the network and host portion of an IP address

- Classless Routing Protocol
- Characteristics of classless routing protocols:
 - -Routing updates include the subnet mask
 - -Supports VLSM
 - **Supports Route Summarization**

Classless Routing Protocol


Routing Protocol	Routing updates Include subnet Mask	Supports VLSM	Ability to send Supernet routes
Classful	No	No	No
Classless	Yes	Yes	Yes

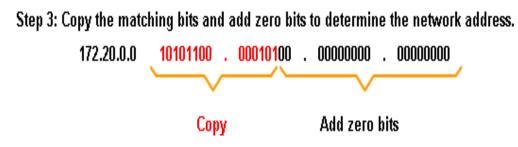
Classless Inter-Domain Routing (CIDR)

- Route summarization done by CIDR
 - -Routes are summarized with masks that are less than that of the default classful mask
 - -Example:

172.16.0.0 / **13** is the summarized route for the 172.16.0.0 / **16** to 172.23.0.0 / **16** classful networks

Route summarization

Classless Inter-Domain Routing (CIDR)


- Steps to calculate a route summary
 - -List networks in binary format
 - -Count number of left most matching bits to determine summary route's mask
 - -Copy the matching bits and add zero bits to determine the summarized network address

Calculating a Route Summary

Step 1: List networks in binary format.

172.20.0.0 172.21.0.0	10101100 10101100					00000000 00000000	
172.22.0.0	10101100		000101	10		00000000	00000000
172.23.0.0	10101100		000101	11		00000000	00000000
<u> </u>							

Step 2: Count the number of left-most matching bits to determine the mask.14 matching bits, /14 or 255.252.0.0

